Serveur d'exploration Hippolyte Bernheim

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A membrane unbinding transition drives cortical dynamics instabilities and cell motility

Identifieur interne : 000279 ( Main/Exploration ); précédent : 000278; suivant : 000280

A membrane unbinding transition drives cortical dynamics instabilities and cell motility

Auteurs : Benoît Maugis [France]

Source :

RBID : Hal:tel-00512834

Descripteurs français

English descriptors

Abstract

Actin polymerization provides the force that directly drives cell motility in a large number of situations, but some observations suggest that amoeboid motions might rely on distinct mechanisms. Using the model of Entamoeba histolytica, we previously observed that these cells produce transient protrusions that are necessary for cell motions. Mutations affecting myosin activity and adhesion molecules inhibit the protrusive activity and cell motility (Coudrier et al, Cell Microbiol. 2005). Following on these observations, we postulated that ameboid motions of Entamoeba histolytica are controlled by a cyclic dynamic instability of the cell cortex: the plasma membrane produces a bleb by unbinding from the cortical cytoskeleton under the action of the internal pressure generated by acto-myosin contraction, and the actin cortex reassembles at the surface of the blebs. The fast initial expansion (faster than actin polymerization) and the analogy with apoptotic blebs produced by the proteolytic disruption of cytoskeleton-membrane links, was a strong indication that Entamoeba histolytica moves by projecting initially cytoskeleton-free blebs, which is confirmed by live fluorescence microscopy of stained F-actin. Experimentally, the protrusion formation has been analyzed in details by video-microscopy. Protrusions first expand during a few hundreds of milliseconds with very high velocities (up to a few tens of μm/s). Then, expansion goes on with locally spherical membrane shape and no intracellular vesicles. At a later stage, the actin cortex collapses and further expansion appears to be powered by a larger flow with intracellular vesicles. Alternatively, protrusions can retract or get stabilized. The blebbing / stabilization cycle leads to random net cell motions sustained over hours. We present here a physical model that describes the control parameters of the dynamic instability. Using suction pressure of a micropipette, we are able to trigger protrusions, and controled geometry of the experiment gives rise to reproducible protrusive events, pretty well decribed by theoretical models. Such cortical instabilities may thus represent a distinct to generate cell motility, relevant for pathogen invasion and immune cell motions.

Url:


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A membrane unbinding transition drives cortical dynamics instabilities and cell motility</title>
<title xml:lang="fr">Migration cellulaire par instabilité corticale et disjonction cytosquelette-membrane</title>
<author>
<name sortKey="Maugis, Benoit" sort="Maugis, Benoit" uniqKey="Maugis B" first="Benoît" last="Maugis">Benoît Maugis</name>
<affiliation wicri:level="1">
<hal:affiliation type="laboratory" xml:id="struct-509" status="VALID">
<idno type="RNSR">199411684F</idno>
<orgName>Physico-Chimie-Curie</orgName>
<orgName type="acronym">PCC</orgName>
<desc>
<address>
<addrLine>Bâtiment Curie 26 rue d'Ulm 75248 PARIS CEDEX 05</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.upmc.fr/fr/recherche/pole_2/pole_energie_matiere_et_univers2/physico_chimie_curie_pcc_umr_168.html</ref>
</desc>
<listRelation>
<relation active="#struct-93591" type="direct"></relation>
<relation active="#struct-364868" type="direct"></relation>
<relation name="UMR168" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-93591" type="direct">
<org type="institution" xml:id="struct-93591" status="VALID">
<orgName>Université Pierre et Marie Curie - Paris 6</orgName>
<orgName type="acronym">UPMC</orgName>
<desc>
<address>
<addrLine>4 place Jussieu - 75005 Paris</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.upmc.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle active="#struct-364868" type="direct">
<org type="institution" xml:id="struct-364868" status="INCOMING">
<orgName>INSTITUT CURIE</orgName>
<desc>
<address>
<country key="FR"></country>
</address>
</desc>
</org>
</tutelle>
<tutelle name="UMR168" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="IdRef">02636817X</idno>
<idno type="ISNI">0000000122597504</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:tel-00512834</idno>
<idno type="halId">tel-00512834</idno>
<idno type="halUri">https://tel.archives-ouvertes.fr/tel-00512834</idno>
<idno type="url">https://tel.archives-ouvertes.fr/tel-00512834</idno>
<date when="2009-05-19">2009-05-19</date>
<idno type="wicri:Area/Hal/Corpus">000004</idno>
<idno type="wicri:Area/Hal/Curation">000004</idno>
<idno type="wicri:Area/Hal/Checkpoint">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000165</idno>
<idno type="wicri:Area/Main/Merge">000282</idno>
<idno type="wicri:Area/Main/Curation">000279</idno>
<idno type="wicri:Area/Main/Exploration">000279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A membrane unbinding transition drives cortical dynamics instabilities and cell motility</title>
<title xml:lang="fr">Migration cellulaire par instabilité corticale et disjonction cytosquelette-membrane</title>
<author>
<name sortKey="Maugis, Benoit" sort="Maugis, Benoit" uniqKey="Maugis B" first="Benoît" last="Maugis">Benoît Maugis</name>
<affiliation wicri:level="1">
<hal:affiliation type="laboratory" xml:id="struct-509" status="VALID">
<idno type="RNSR">199411684F</idno>
<orgName>Physico-Chimie-Curie</orgName>
<orgName type="acronym">PCC</orgName>
<desc>
<address>
<addrLine>Bâtiment Curie 26 rue d'Ulm 75248 PARIS CEDEX 05</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.upmc.fr/fr/recherche/pole_2/pole_energie_matiere_et_univers2/physico_chimie_curie_pcc_umr_168.html</ref>
</desc>
<listRelation>
<relation active="#struct-93591" type="direct"></relation>
<relation active="#struct-364868" type="direct"></relation>
<relation name="UMR168" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-93591" type="direct">
<org type="institution" xml:id="struct-93591" status="VALID">
<orgName>Université Pierre et Marie Curie - Paris 6</orgName>
<orgName type="acronym">UPMC</orgName>
<desc>
<address>
<addrLine>4 place Jussieu - 75005 Paris</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.upmc.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle active="#struct-364868" type="direct">
<org type="institution" xml:id="struct-364868" status="INCOMING">
<orgName>INSTITUT CURIE</orgName>
<desc>
<address>
<country key="FR"></country>
</address>
</desc>
</org>
</tutelle>
<tutelle name="UMR168" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="IdRef">02636817X</idno>
<idno type="ISNI">0000000122597504</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
<country>France</country>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="mix" xml:lang="en">
<term>Cell migration Protrusion Bleb Hydrostatic pressure</term>
</keywords>
<keywords scheme="mix" xml:lang="fr">
<term>Migration cellulaire Protrusion Bleb Pression hydrostatique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Actin polymerization provides the force that directly drives cell motility in a large number of situations, but some observations suggest that amoeboid motions might rely on distinct mechanisms. Using the model of Entamoeba histolytica, we previously observed that these cells produce transient protrusions that are necessary for cell motions. Mutations affecting myosin activity and adhesion molecules inhibit the protrusive activity and cell motility (Coudrier et al, Cell Microbiol. 2005). Following on these observations, we postulated that ameboid motions of Entamoeba histolytica are controlled by a cyclic dynamic instability of the cell cortex: the plasma membrane produces a bleb by unbinding from the cortical cytoskeleton under the action of the internal pressure generated by acto-myosin contraction, and the actin cortex reassembles at the surface of the blebs. The fast initial expansion (faster than actin polymerization) and the analogy with apoptotic blebs produced by the proteolytic disruption of cytoskeleton-membrane links, was a strong indication that Entamoeba histolytica moves by projecting initially cytoskeleton-free blebs, which is confirmed by live fluorescence microscopy of stained F-actin. Experimentally, the protrusion formation has been analyzed in details by video-microscopy. Protrusions first expand during a few hundreds of milliseconds with very high velocities (up to a few tens of μm/s). Then, expansion goes on with locally spherical membrane shape and no intracellular vesicles. At a later stage, the actin cortex collapses and further expansion appears to be powered by a larger flow with intracellular vesicles. Alternatively, protrusions can retract or get stabilized. The blebbing / stabilization cycle leads to random net cell motions sustained over hours. We present here a physical model that describes the control parameters of the dynamic instability. Using suction pressure of a micropipette, we are able to trigger protrusions, and controled geometry of the experiment gives rise to reproducible protrusive events, pretty well decribed by theoretical models. Such cortical instabilities may thus represent a distinct to generate cell motility, relevant for pathogen invasion and immune cell motions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Maugis, Benoit" sort="Maugis, Benoit" uniqKey="Maugis B" first="Benoît" last="Maugis">Benoît Maugis</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Psychologie/explor/BernheimV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Psychologie
   |area=    BernheimV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Hal:tel-00512834
   |texte=   A membrane unbinding transition drives cortical dynamics instabilities and cell motility
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Mar 5 17:33:33 2018. Site generation: Thu Apr 29 15:49:51 2021